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Photovoltaics for Next Generation Space Missions:  
Deep Space/Outer Planetary Missions 

• Higher power requirements for outer planet exploration 

• Beyond power for most radioisotope thermoelectric generators (RTG) 

 

• Outer planets have low temperature compared to Low Earth Orbit (LEO)  

        and some missions, like those near Jupiter, will encounter intense radiation belts. 

 

• Flexible radiation hard thin films solar cells may be competitive if packing ratio/specific  

       power is high compared to multijunction 

• Particularly for low cost satellites (CubeSat and SmallSat, 6U and 24U) 
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G. A. Landis and J. Fincannon,  

      IEEE 42nd (PVSC),  
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Single Bandgap Limit and Multijunction Solar 
Cells: GaInNAs  

L. C. Hirst & N. J. Ekins-Daukes, Prog. PV. 19, 286 (2010) 

• Three junctions: 44.4% efficient 

• Four junctions: Up to 52% efficient 

• Power wasted by Ge due to poor current 

matching  

 

 

J.F. Geisz and D.J.Freidman, Semicond. Sci. Technol. 17, 769 (2002)  

We need a material with 1 eV band gap,  

correct lattice spacing   
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Previous hydrogenation work: 

• Removes effect of substitutional 

nitrogen 

• selective passivation of certain 

defects with increasing hydrogen 

 

 

GaInNAs is Promising but Problematic -  
Passivation Techniques 

Growth Problems: 

• High temperature  phase 

separation, clustering 

• Low temperature  defect 

formation, 

    low nitrogen inclusion,   

    alloy fluctuations 

 J. S. Harris, Semicond. Sci. Technol. 17, 880 (2002) 
• UV-activated 

hydrogenation – 

Deuterium based 

 

• Typical 100 °C – 350 ° 

C 

 

• Pressures ranging 

from 10-6 – 105 Torr 

Polimeni et al. Semi. Sci Tech. 797, (2002) 

Brown et al.  RSC Advances 7, 25353 (2017) 
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 Passivation and Solar Cell Characterization 

• Increase in performance of the solar cell after hydrogenation 

 

• No visible effect on the substitutional Nitrogen – selective passivation 

 

• Understanding of doping change necessary, especially for PIN structure 

 

 

 

 

Fukuda et al. Applied Physics Letters 106, 141904 (2015) 
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Flexible (commercial) CIGS: MiaSolé product 

• Commercial grade CIGS with module efficiency of 17 

% (20%  - 2020) 

 

• PVD Roll-to-Cell process on flexible steel 

 

• Specifications: (for example - FLEX-02W) 2.4 Kg/mm / 

2598 mm x 1000 mm = 380 W 

 

• Payload (AM1.5G) ~ 61 W/kg 
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CIGS for Deep Space: a unique application 

   www.miasole.com 

www.nasa.gov/mission_pages/smallsats 

A. Jasenek et al., Proc. WCPEC-3, 2003. 

BioSentinel - www.nasa.gov 

G. A. Landis and J. Fincannon, IEEE 42nd (PVSC),  

• Low cost, deployable technology 

• (At least) equivalent payload 

• Higher packing volume 

• Radiation hard 
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CIGS: Materials Properties: Metastability 

Acknowledgement - Angus Rockett (CSM) 

Lany and Zunger, JAP 100, 113725 (2006) 

Reversible metastability under PV 

operating conditions 
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      Effects of Metastability:  LILT Effect 

•  Relaxed – dark 330 K for 1 hour 

•  Metastable – light soaked at RT for 1 

hour (AM-0)  

M. Igalson et al., SOLMAT 93, 1290 (2009) 

Saturn: T = 100 K; I = 0.01 suns 

- Loss of Fill factor in R-state 

- Evidence of parasitic barrier 

 

 

Jupiter: T = 135 K; I = 0.04 suns 

- Loss of Fill factor in R-state 

      (less than observed in Saturn) 

- Higher thermal energy 

 

Mars: T = 263 K; I = 0.4 suns 

- Comparable fill factor (R and M) 

- Reversal observed/ higher Rs 

      in M-state 

 

-     Evidence of generation                    

recombination losses in the bulk. 

Brown et al.  in preparation 
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      Thermal Cycling and LILT Analysis 

• Initial – AM0 300 K 

• Mid RT – after 12 hour at -100 ˚C 

• Final RT – after 12 hour at 100 ˚C 

 

 

No significant degradation – some 

improvement after high temperatures! 

• Solar Cells measured at conditions equivalent to Saturn, 

Jupiter, and Mars 

• Distinct reduction in series resistance in lower LILT 

conditions – metastable defects/impurities 

• Evidence of photosensitive barrier at  lower temperatures 

• EQE suggest losses are Voltage related 

 

Brown et al.  in preparation 



Photovoltaics Materials & Device Group, University of Oklahoma: http://www.nhn.ou.edu/~sellers/group/index.html   

Effects of proton irradiation and self healing effects 

• Solar cells exposed to 1MeV proton 

irradiation/fluence from 1×1012 protons/cm2 to 

1×1016 protons/cm2 

 

• Rapid degradation evident…. 

 

• Significantly higher than typically used!  

JPL (NASA) EESP Base Report 4/26/2017: 

“Solar Arrays for LILT and High Radiation 

Environments.” 

Jasenek et al. WCPEC 2003   

Brown et al.  in preparation 
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Effects of proton irradiation and self healing effects 

• Solar cells exposed to 1MeV proton 

irradiation/fluence from 1×1012 protons/cm2 to 

1×1016 protons/cm2 

 

• Rapid degradation evident…. 

 

• Significantly higher than typically used!  

JPL (NASA) EESP Base Report 4/26/2017: 

“Solar Arrays for LILT and High Radiation 

Environments.” 

Jasenek et al. WCPEC 2003   

• Cells exposed to heat under 

illuminations 

 

• Upon heating strong evidence of 

“self-healing” 

 

• Further studies underway 

 

Brown et al.  in preparation 
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Summary and Acknowledgements 

OCAST OARS 12.2-040 and Oklahoma NASA EPSCoR NNX16AQ97A 

• For future trips to deeper space technologies need developing 

unique to the rigors of those environments 

 

• Both GaInNAs (MJSCs) and CIGS have potential for such 

applications 

 

• GaInNAs requires more work to improve materials quality and 

hydrogen passivation has potential 

 

• CIGS appear to have unique potential for deep space CubeSat 

and SmallSat applications   


